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@ Feb 2019: Started my PhD at the University of Freiburg under the
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@ Apr 1993: Opened my eyes for the first time in Tirana, Albania.
@ Apr 2015: Moved to Freiburg, Germany for my Master in CS.

@ Feb 2019: Started my PhD at the University of Freiburg under the
supervision of Frank Hutter.

@ | am also an ELLIS PhD student co-supervised by Yee Whye Teh (University
of Oxford).

- Spent also 1 year in UK (including industry internship).
@ During my PhD:

- | worked a lot on improving algorithms that search for architectures of
deep neural networks.
- Mostly empirical and applied to various settings.
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A Few Words About Me

@ Apr 1993: Opened my eyes for the first time in Tirana, Albania.
@ Apr 2015: Moved to Freiburg, Germany for my Master in CS.

@ Feb 2019: Started my PhD at the University of Freiburg under the
supervision of Frank Hutter.
@ | am also an ELLIS PhD student co-supervised by Yee Whye Teh (University
of Oxford).
- Spent also 1 year in UK (including industry internship).
@ During my PhD:
- | worked a lot on improving algorithms that search for architectures of
deep neural networks.

- Mostly empirical and applied to various settings.
- Also adopted a cat.
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Motivation

Why does the architecture matter?

o Expressive power: What the model can learn
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Motivation

Why does the architecture matter?

o Expressive power: What the model can learn
o Optimization: How fast it can learn

- E.g., skip connections for vanishing gradients and smoother loss
landscape.

(a) without skip connections (b) with skip connections
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Motivation

Why does the architecture matter?

o Expressive power: What the model can learn
o Optimization: How fast it can learn
- E.g., skip connections for vanishing gradients and smoother loss
landscape.
@ Generalization: How well it performs on unseen data
- Prior: Search space; architectural preferences (e.g., conv layers for
image data)
- Posterior: Updated belief given training data
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o Practical implications
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Motivation

Why does the architecture matter?

o Expressive power: What the model can learn
o Optimization: How fast it can learn
- E.g., skip connections for vanishing gradients and smoother loss
landscape.
@ Generalization: How well it performs on unseen data
- Prior: Search space; architectural preferences (e.g., conv layers for
image data)
- Posterior: Updated belief given training data
o Practical implications
- Efficiency: memory usage, inference speed, etc.
- Robustness: to noise, distribution shift, etc.
- Interpretability: simpler models easier to analyze.
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How to search for architectures in a more systematic way?
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@ Problem Formulation

@ Optimization and Generalization: Differentiable Architecture Search
© Robustness: Neural Ensemble Search

@ Efficiency: Multi-objective Differentiable Architecture Search

© Expressivity: Linear RNNs for State-tracking
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Problem Formulation

Bi-level optimization problem

Assume we have a discrete architecture space A, a loss function £, and a dataset
D= Dt’rain U Dvalid-
@ L is a (stochastic) function of both A € A and w € R?

@ Optimizing both L1 := L(*; Dirain) and Ly := L(-; Dyaiia) corresponds to
a bi-level optimization problem:

m}%n{ﬁ*v (A) ==Ly (w*(N\), N} (upper-level)
s.t. w*(A) = argmin Lypgin (W, A), (lower-level)
1]
E
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Problem Formulation

Bi-level optimization problem

Assume we have a discrete architecture space A, a loss function £, and a dataset
D= Dt’rain U Dvalid-
@ L is a (stochastic) function of both A € A and w € R?

@ Optimizing both L1 := L(*; Dirain) and Ly := L(-; Dyaiia) corresponds to
a bi-level optimization problem:

m}%n{ﬁ*v()\) =Ly (W (A\), N} (upper-level)
s.t. w*(A) = argmin Lypgin (W, A), (lower-level)

Solvers for the upper-level:

@ 0-th order methods: e.g., evolutionary strategies, Bayesian optimization.

@ 1-th order methods: SGD on continuous relaxation of A using
hypergradients.
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Problem Formulation

Bi-level optimization problem

oLy _ (()Ev -y m)

22N ow O -
A wH(X)
hypergradient
hyperparam indirect grad. (3)
ILAWRN) 4 ALAWR) x 2 w (A)
OX oW\

hyperparam direct grad. parameter direct grad. best-response Jacobian
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Problem Formulation

Bi-level optimization problem

oLy _ (()Ev -y m)

22N ow O
A wH(X)
hypergradient
hyperparam indirect grad. (3)
ILAWRN) 4 ALAWR) x 2 w (A)
OX oW\

hyperparam direct grad. parameter direct grad. best-response Jacobian

Theorem 1 (Cauchy, Implicit Function Theorem). If
for some (X, w'), da%‘x,w’ =0 and regularity condi-
tions are satisfied, then surrounding (X', w') there is a
function w*(X) s.t. %l,\,w*()\) =0 and we have:

> -1
aw*|  _ 2Ly 2Ly
; =—| o5y X o=l IFT
RN 2\ { owow? } OworT N,wH(N) ( )
training Hessian training mixed partials
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Problem Formulation

Bi-level optimization problem
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Problem Formulation

Bi-level optimization problem

— LAW(N)
wiA) =
Implict

best — response
function

ow' _
22y

Implicit derivative

LAy, w)
* g, w' ()

oL + Low” _
oA Ow d\
Hypergradient

Figure 1:  Overview of gradient-based hyperparameter optimization (HO). Left: a training loss manifold; Right: a
validation loss manifold. The implicit function w*(A) is the best-response of the weights to the hyperparameters
and shown in blue projected onto the (X, w)-plane. We get our desired objective function £(A) when the
best-response is put into the validation loss, shown projected on the hyperparameter axis in red. The validation
loss does not depend directly on the hyperparameters, as is typical in hyperparameter optimization. Instead, the
hyperparameters only affect the validation loss by changing the weights’ response. We show the best-response
Jacobian in blue, and the hypergradient in red.

Lorraine et al. Optimizing Millions of Hyperparameters by Implicit Differentiation. In AISTATS 2020
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Differentiable Architecture Search (DARTS) [Liu et al. ‘19]

Continuous Relaxation

@ Between 2 nodes (features maps): Categorical choice for which operation to use.

- Relax discrete space using a convex combination of these choices —>
supernetwork with shared weights between architectures

Encoder Decoder
Architecture x

output surface of Optimized Architecture x
performance prediction
function f

continuous space of architectures &
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Liu et al. Neural Architecture Optimization. In NeurlPS 2018
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Differentiable Architecture Search (DARTS) [Liu et al. ‘19]

Continuous Relaxation

@ Between 2 nodes (features maps): Categorical choice for which operation to use.

- Relax discrete space using a convex combination of these choices —
supernetwork with shared weights between architectures
. o NG .
@ MixedOp: z\) = ZK]_ 5(1,])@(1)) - Zi<j ZOEO Wo(m(l))
o’co € °
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Differentiable Architecture Search (DARTS) [Liu et al. ‘19]

Continuous Relaxation

@ Between 2 nodes (features maps): Categorical choice for which operation to use.

- Relax discrete space using a convex combination of these choices —
supernetwork with shared weights between architectures

_ o (5.9
@ MixedOp: 20 = Zi<j 5(1,J)(x(1)) — Ei<j ZOEO eXo

ﬁo(ﬂ’))
ZOIEO e ol
@ Disctretize back by keeping the operation with the highest A
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DARTS: Architecture Optimization

Assume we have a discrete architecture space A, a loss function £, and a dataset
D= Dtrain U Dvalid-

@ L is a (stochastic) function of both A € A and w € R?

@ Optimizing both L1 := L(+; Dtrain) and Ly := L(+; Dyaria) corresponds to
a bi-level optimization problem:

m)%n{ﬁ*v()\) =Ly (W (A\), N} (upper-level)
s.t. w'(A\) = argmin Lipqin (W, \), (lower-level)
wW
[*]
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DARTS: Architecture Optimization

Assume we have a discrete architecture space A, a loss function £, and a dataset
D= Dtrain U Dvalid-

@ L is a (stochastic) function of both A € A and w € R?

@ Optimizing both L1 := L(+; Dtrain) and Ly := L(+; Dyaria) corresponds to
a bi-level optimization problem:

m)%n{ﬁ*v()\) =Ly (W (A\), N} (upper-level)
s.t. w'(A\) = argmin Lipqin (W, \), (lower-level)

Approximate w*(\) & w — &V Lo (W, \)

The optimization alternates between:

QO ww—-&EVuLlr(w,\)
O N A-&EVALY(N)
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DARTS: Architecture Optimization

Assume we have a discrete architecture space A, a loss function £, and a dataset
D= Dtrain U Dvalid-

@ L is a (stochastic) function of both A € A and w € R?

@ Optimizing both L1 := L(+; Dtrain) and Ly := L(+; Dyaria) corresponds to
a bi-level optimization problem:

m/\in{ﬁ?}()\) =Ly (W (M), N} (upper-level)
s.t. w*(A\) = argmin Lyygin (W, ), (lower-level)

Approximate w*(A\) & w — &V Lo (W, A)

The optimization alternates between:

QO w—w-&VuLr(w,)\)
e A=A — EQV)\E*V(A)

where, V)\[,*{/(/\) ~ V)\,CV (W*, )\)—61 vw[,\/ (W*7 )\)Va,,)\['T(W*v )\)
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Generalization after discretization

Works quite well on many search spaces

Original CNN space: 8 operations choices between pairs of nodes
28 MixedOPs in total

> 100 possible architectures

< 3% on CIFAR-10 in less than 1 GPU day of search

sep_conv_3x3

k) | _sepcom_3x3

skip_connect

max_pool_3x3

e oY (2]
c_{k-2) | max_pool_3x3
:
max_pool_3x3_—" N 7

skip_connect ‘

sep_conv_3x3

max_pool_3x3

max_pool_3x3

skip_connect

Figure 4: Normal cell learned on CIFAR-10. Figure 5: Reduction cell learned on CIFAR-10.
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Generalization after discretization

But not always...

S1: This search space uses a different set of two operators per edge.
S2: {3 x 3 SepConv, SkipConnect}.

S3: {3 x 3 SepConv, SkipConnect, Zero},

S4: {3 x 3 SepConv, Noise}.
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Generalization after discretization

But not always...

S1: This search space uses a different set of two operators per edge.
S2: {3 x 3 SepConv, SkipConnect}.

S3: {3 x 3 SepConv, SkipConnect, Zero},

S4: {3 x 3 SepConv, Noise}.

skip_connect
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Generalization after discretization

Small toy search space

S5: Very small search space with known global optimum.

@ 81 possible architectures trained 3 independent times using the default DARTS
settings.
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Generalization after discretization

Small toy search space

S5: Very small search space with known global optimum.

@ 81 possible architectures trained 3 independent times using the default DARTS
settings.

@ Test performance after discretization diverges.

L, factor: 0.0003

7 60
—— DARTS test regret
6 - —==- DARTS one-shot val. error
—— RS-ws test regret 50
51 L X
g \ S
i 40 &
w4
[ 5
o c
234 S
) F30 &
i k=l
= 24 ©
>
11 20
01 ; ; i - —L 10 g
0 10 20 30 40 50 g
Search epoch TZuT
o
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Loss landscape

Sharp vs. flat minima

@ What is an indicator that the found solutions generalize after discretization?
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Loss landscape

Sharp vs. flat minima

@ What is an indicator that the found solutions generalize after discretization?

@ Flatness/sharpness of minima, e.g. in large vs. small batch size training of NN, is
a good indicator of generalization.

79.5 T T T T 800
: — 1E-3 :
79.0 | P _ . 5E4 ] 4700
785}
3
© 78.0 |- "
5 @
g g
<775 f g
o @
c 2
B 77.0F- v
k)
S
765
76.0
75.5 == i i i 0
0 1000 2000 3000 4000 5000
Batch Size
1]
3
2
sl ol
2y
Keskar et al. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. In ICLR 2017 Su

Arber Zela Neural Architecture Search Nov 2024 15



How the curvature relates with generalization?

@ Sharp minima much more sensitive to variations in the input space after
discretization.
@ Discretization via argmax: A} = [3.2,1.1,2.5] — \%*¢ = [1,0,0].

Lossyaiia

1
T
1
adtsc a* adtsc a*
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How the curvature relates with generalization?

@ Sharp minima much more sensitive to variations in the input space after

discretization.

@ Discretization via argmax: A} = [3.2,1.1,2.5] — \%*¢ = [1,0,0].

Validation accuracy drop (%)

Arber Zela

Eigenvalues vs. Accuracy Drop
Spearman corr. coef.: 0.736

30+

20

104

" ‘4.;.- :

T T T T
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Generalization of architectures and sharpness of minimas

@ Compute the full Hessian V3 Ly on a randomly sampled mini-batch from the
validation set.

UNI
1

FREIBURG

Arber Zela Neural Architecture Search Nov 2024 17



Generalization of architectures and sharpness of minimas

@ Compute the full Hessian V3 Ly on a randomly sampled mini-batch from the
validation set.

@ The dominant EV starts increasing at the point where the architecture
generalization error starts increasing.

;\3 30 8
§ 7 g 0.8
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o
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S g @ 0.6
= S 2
820 55 w
T 7 S04
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Generalization of architectures and sharpness of minimas

@ Compute the full Hessian V3 Ly on a randomly sampled mini-batch from the

validation set.

@ The dominant EV starts increasing at the point where the architecture

generalization error starts increasing.

@ High correlation between generalization and the dominant eigenvalue (EV).

Arber Zela

5.5

Test error (%)
w > > 4
w o w o

w
<)

S1 C10 (Average over the EV trajectory)
Pearson corr. coef.: 0.867, p-value: 0.00000
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Regularizing the Lower-level Problem

Improved generalization

@ If lower-level problem strongly convex, convergence of upper-level guaranteed
under suitable step size conditions and smoothness.

@ Increasing the L5 regularization in the lower-level — narrower and more convex
basins towards w + smoother landscape.

Eigen. distribution: S1 cifarl0 Eigen. distribution: S2 cifar10 Eigen. distribution: S3 cifar10 2 Eigen. distribution: S4 cifar10
1\
200 o3 | 1 A
— L0000 \ I
s =
ooy [ . w0
Li=000m
=i \
125 s s | 15
: \
. 10
75 }
.
so
2 I 2 ®
25 |
00 o 0
37 00 02 o¢ o6 o8 10 32 o0 o2 os YSi o2 oo o2 oa o5 o8 1 00 o1 o2

Test error (%)

3
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Heuristics

Early Stopping and Adaptive Regularization

Goal: Keep the dominant eigenvalue to a low value (or at least return a solution

before it increases). If the Ayaq(i —

@ Early stop.

S1 cifarl0

Max. Eigenvalue MA

0 10 20 30 40 50
Epoch

Arber Zela

k) Amaz (1)

< 3/4:

@ Roll back and increase regularization.

Setting RandomNAS DARTS DARTS-ES [ DARTS-ADA
S1 3.17+£0.15 4.66 £0.71 3.05 £0.07 3.03 £0.08

clo [SZ[ BAGE0I5 | 1422040 | 34TE0.04 | 359 =031
S31 2.92£0.04 412£085 JTET14 2.99 £0.34

| S%| 8939 £ 081 | 6.95=0.18 | 417£021 | 3.89 =067

ST [ 25.81£0.39 28.90 £ 0.81 [ 24.94 £ 0.81

100 S2 2288 £0.16 2468 £ 143 | 2688 £ .11
S3 | 2458 £0.61 | 2! 2699 £ 1.79 | 24.55 £0.63
S47730.01 £1.52 | 2477 £ 1.5T | 23.90 £ 2.01 | 23.66 = 0.90

ST [ 2.64£0.09 | 9.88=£5.50 | 2.80 £0.09 | 2.59 =0.07

SVHN S2 [ 2.57£0.04 3.69+£0.12 | 2.68 £0.18 2.79 £0.22

S3 [ 289£0.09 | 400= 101 | 2.78£029 | 2.58=0.07

S4 | 3.42+£0.04 2.90£0.02 | 255 £0.15 2.52 £0.06
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UNI

FREIBURG

19



Heuristics

Early Stopping and Adaptive Regularization

Goal: Keep the dominant eigenvalue to a low value (or at least return a solution
before it increases). If the Aoz (i — &)/ Amax (i) < 3/4:

@ Early stop. @ Roll back and increase regularization.
PP Table 2 Effect of regularization for dispar-
0.8] — L,200003 ity estimation. Search was conducted on
— 1;=0.0009 FlyingThings3D (FT) and then evaluated on
PR i yeed both FT and Sintel. Lower is better.
% 0.61 — 1,=0.0243
% Aug. Search model valid  FTtest Sintel test Params
205 Scale EPE El EPE (M)
ES 0.0 4.49 3.83 5.69 9.65
g 04 0.1 353 375 5.97 9.65
% 0.5 3.28 337 522 943
g 03 L0 4.61 312 5.47 12.46
L5 523 2.60 4.15 1257
0.2 = 2.0 745 233 3.76 12.25
== L, reg. Search model valid FT test Sintel fest Params
01 factor EPE EPE EPE (M)
o 10 20 30 40 50 3x 1071 395 325 6.13 11.00
Epoch 9x 1074 597 230 4.12 13.92
27 x 107" 4.25 272 4.83 10.29
81 x107* 4.61 234 385 12.16

UNI
1

FREIBURG

Arber Zela Neural Architecture Search Nov 2024 19



Arber Zela

Neural Ensemble Search

Neural Architecture Search

Nov 2024



Quantifying Uncertainty in Deep Learning

Why are they important?

@ Predictive uncertainty can be for instance the output label together with
the confidence of that prediction in classification
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Quantifying Uncertainty in Deep Learning

Why are they important?

@ Predictive uncertainty can be for instance the output label together with
the confidence of that prediction in classification

@ Good uncertainty estimates quantify how much we can trust our model’s
predictions
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Quantifying Uncertainty in Deep Learning
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Quantifying Uncertainty in Deep Learning

Why are they important?

@ Predictive uncertainty can be for instance the output label together with
the confidence of that prediction in classification

@ Good uncertainty estimates quantify how much we can trust our model’s
predictions

@ Some applications where uncertainty quantification is important are:

- Cost-sensitive decision making (healthcare e.g. medical imaging;
self-driving cars; robotics)
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Quantifying Uncertainty in Deep Learning

Why are they important?

@ Predictive uncertainty can be for instance the output label together with
the confidence of that prediction in classification

@ Good uncertainty estimates quantify how much we can trust our model’s
predictions

@ Some applications where uncertainty quantification is important are:

- Cost-sensitive decision making (healthcare e.g. medical imaging;
self-driving cars; robotics)

- Dealing with distribution shift (Feature skew between train and test
sets; test inputs do not belong to any of the training classes)
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Quantifying Uncertainty in Deep Learning

Why are they important?

@ Predictive uncertainty can be for instance the output label together with
the confidence of that prediction in classification

@ Good uncertainty estimates quantify how much we can trust our model’s
predictions

@ Some applications where uncertainty quantification is important are:

- Cost-sensitive decision making (healthcare e.g. medical imaging;
self-driving cars; robotics)

- Dealing with distribution shift (Feature skew between train and test
sets; test inputs do not belong to any of the training classes)

- Safe exploration in RL, etc.
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Quantifying Uncertainty in Deep Learning

Why are they important?

@ Predictive uncertainty can be for instance the output label together with
the confidence of that prediction in classification

@ Good uncertainty estimates quantify how much we can trust our model’s
predictions

@ Some applications where uncertainty quantification is important are:

- Cost-sensitive decision making (healthcare e.g. medical imaging;
self-driving cars; robotics)

- Dealing with distribution shift (Feature skew between train and test
sets; test inputs do not belong to any of the training classes)

- Safe exploration in RL, etc.

@ Ideally we want a system that knows what it doesn't know.
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Calibration and Robustness to dataset shift

Are deep neural networks calibrated and robust to OOD data?

o Calibration tells us how well the predicted confidence (probability of
correctness) of the model aligns with the observed accuracy (frequency of
correctness).
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Calibration and Robustness to dataset shift

Are deep neural networks calibrated and robust to OOD data?

o Calibration tells us how well the predicted confidence (probability of
correctness) of the model aligns with the observed accuracy (frequency of
correctness).

@ E.g. in image classification: if the correct predicted class was always with
80% probability, then a perfectly calibrated system would imply that on 80%
of the examples it predicted the true class.
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Calibration and Robustness to dataset shift

Are deep neural networks calibrated and robust to OOD data?

o Calibration tells us how well the predicted confidence (probability of
correctness) of the model aligns with the observed accuracy (frequency of
correctness).

@ E.g. in image classification: if the correct predicted class was always with
80% probability, then a perfectly calibrated system would imply that on 80%
of the examples it predicted the true class.

@ Usually neural networks are not well-calibrated making overconfident or
underconfident predictions
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Calibration and Robustness to dataset shift

Are deep neural networks calibrated and robust to OOD data?

o Calibration tells us how well the predicted confidence (probability of
correctness) of the model aligns with the observed accuracy (frequency of
correctness).

@ E.g. in image classification: if the correct predicted class was always with
80% probability, then a perfectly calibrated system would imply that on 80%
of the examples it predicted the true class.

@ Usually neural networks are not well-calibrated making overconfident or
underconfident predictions

@ Moreover, they are fragile, i.e. they do not have high uncertainty on
out-of-distribution (OOD) inputs.
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Ensembles of Neural Networks

Deep Ensembles

@ Ensembles of networks are commonly used to boost performance.
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Ensembles of Neural Networks

Deep Ensembles

@ Ensembles of networks are commonly used to boost performance.

@ Recent interest in ensembles has been due to their strong predictive
uncertainty estimation and robustness to distributional shift.
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Ensembles of Neural Networks

Deep Ensembles

@ Ensembles of networks are commonly used to boost performance.

@ Recent interest in ensembles has been due to their strong predictive
uncertainty estimation and robustness to distributional shift.

300
200
100
0
—100
—200
-300

-6 —4 -2 0 2 4 6
Figure: (from Lakshminarayanan et al. 2017)
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Ensembles of Neural Networks

Deep Ensembles

@ Ensembles of networks are commonly used to boost performance.

@ Recent interest in ensembles has been due to their strong predictive
uncertainty estimation and robustness to distributional shift.

@ Deep ensembles [Lakshminarayanan et al. 2017], only ensemble predictions
coming from the same fixed architecture as follows:

© Independently train multiple copies of a fixed architecture with random
initializations.

@ Create an ensemble by averaging outputs, i.e. predicted distribution
over the classes (in the case of classification).
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Ensembles of Neural Networks

Deep Ensembles

@ Ensembles of networks are commonly used to boost performance.

@ Recent interest in ensembles has been due to their strong predictive
uncertainty estimation and robustness to distributional shift.

@ Deep ensembles [Lakshminarayanan et al. 2017], only ensemble predictions
coming from the same fixed architecture as follows:

© Independently train multiple copies of a fixed architecture with random
initializations.

@ Create an ensemble by averaging outputs, i.e. predicted distribution
over the classes (in the case of classification).

@ Diversity among the base learners’ predictions is believed to be key for
strong ensembles.
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Ensembles of neural networks

On diversity in ensembles

@ Notation: fp is a network with weights 6, and £(fo(x),y) is the loss for
(z,y). Define the ensemble of M networks fy,, ..., fo,, by

F(z) = 4 201, fo(@).
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Ensembles of neural networks

On diversity in ensembles

@ Notation: fp is a network with weights 6, and £(fo(x),y) is the loss for
(z,y). Define the ensemble of M networks fy,, ..., fo,, by

F(z) = 4 201, fo(@).

© Average base learner loss: - Zf\il U fo, (), y).
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Ensembles of neural networks

On diversity in ensembles

@ Notation: fp is a network with weights 6, and £(fo(x),y) is the loss for
(z,y). Define the ensemble of M networks fy,, ..., fo,, by

F(@) = 3 il fou(@).
© Average base learner loss: - Zf\il U fo, (), y).

@ Oracle ensemble: given fy, ..., fo,,, the oracle ensemble Fog is defined as

Foe(z) = fo,(x), where k€ argmin{(fy,(x),y).
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Ensembles of neural networks

On diversity in ensembles

Notation: fy is a network with weights 6, and £(fy(x),y) is the loss for
(z,y). Define the ensemble of M networks fy,, ..., fo,, by

F(z) = 4 201, fo(@).

© Average base learner loss: - Zf\il U fo, (), y).

@ Oracle ensemble: given fy, ..., fo,,, the oracle ensemble Fog is defined as

Foe(z) = fo,(x), where k€ argmin{(fy,(x),y).

@ As a rule of thumb, small oracle ensemble loss indicates more diverse base
learner predictions.
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Ensembles of neural networks

On diversity in ensembles

Proposition

Suppose £ is negative log-likelihood (NLL). Then, the oracle ensemble loss,
ensemble loss, and average base learner loss satisfy the following inequality:

HFor(@),) < HF(@).9) < 37 Y ((fo (@), ).

Taking £(f(x),y)) = —log[f(x)], (convex function), it follows direct by applying
Jensen's inequality for the right inequality and definition of oracle ensemble for
the left one.

BURG

. . . . =
[f(x)]y is the probability assigned by the network f of = belonging to the true class y. 5&
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Varying vs. fixed base learner architectures

Visualizing base learner predictions using t-SNE on CIFAR-10

t-SNE dimension 2
o
T

T T T T T T T
4 At v v ” Fixed arch
B Az 4 % Varying arch.
A3 ¥ v v: 2F 1
v
v Acha x
MY 4 v " x
v %
R A T ~ 1 J
v v =
L T 5 S
v b ® 2
@
x * a
153
v aonsl g of .
A ©
= a w
r =
- . i 13
= 4 1k §
ag " P = -t
uEy N
N 4 .
PR N
s
N ok .
. 4
L L L L L L L L
-2 0 2 -2 -1 0 1 2

t-SNE dimension 1

t-SNE dimension 1

Figure: Left: Predictions of 5 different archs, each trained with 20 different inits. Right:
Predictions of base learners in an ensemble with varying archs (found using NES) vs. fixed arch
(deep ensemble of optimized arch).
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Neural Ensemble Search

General approach

Let fp » denote a network with arch A € A and weights §. Computational budget
denoted by K and ensemble size by M. We want to solve:

Al,.TAiﬁeAE (Ensemble(fo, Ays---» forr .20 )s Dal)

s.t. 0, € argmin £(fy x,, Dirain) fori=1,...,.M
0

Our approach for finding base learner architectures that optimize ensemble
performance consists of two steps.

@ Pool building: build a pool = {fo, .-, fox ax } Of size K consisting of
potential base learners, where each fy, », is a network trained independently

on Dtrain-
@ Ensemble selection: select M base learners fg;«,)\;,...,f%yk& from to
form an ensemble which minimizes loss on Dy,. (We assume K > M.)
g
=
Lolm
w
L
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Neural Ensemble Search

NES-RS and NES-RE

@ NES-RS is a simple random search (RS) based approach: we build the pool
by sampling K architectures uniformly at random.

@ NES-RE uses regularized evolution (RE) [Real et al. 2019] to evolve a
population of architectures until the budget K is reached.

Select Sample Update
population

ensemble parent . Mutate .

@ For step 2, we use forward step-wise selection without replacement: given
pool , start with an empty ensemble and add to it the network from which
minimizes ensemble loss on D,,. We repeat this without replacement until
the ensemble is of size M. (Caruana et al., 2004)
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Neural Ensemble Search

Results on common image classification benchmarks

@ Results on NAS-Bench-201 [Dong et al. 2020].
- Ensembles from NES better than deep ensembles of the global

minimum.
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2 2225 2155 \)\/\—;
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Neural Ensemble Search

Results on common image classification benchmarks

@ Results on NAS-Bench-201 [Dong et al. 2020].

- Ensembles from NES better than deep ensembles of the global
minimum.

- Better calibrated on dataset shift.
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Multi-objective Differentiable Architecture Search
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NAS in a world of ever growing models

@ In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.
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NAS in a world of ever growing models

@ In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.

LARGE LANGUAGE MODEL HIGHLIGHTS (MAR/2024) i

©Nano oxs o Small @ Medium Large
Mamba 288  Pythia 128 Palmyra 208 Command 528 Yuan 20 10268

phi-2 278 Mistral 78 c12 StableLM 658

InternLM 1048

Zephyr 7.3B Retro 488 658 Jurassic-2 o

Gauss MPT-308 Luminous Supreme Falcon 1808

StripedHyena 78 Command-R 358 70B Claude 2.1

Persimmon-88 Yi-348 Perplexity 70B Online Mistral-medium -
DecilM-78 Mixtral 8x78 Qwen-72B a3
SOLAR 1078 DeepSeek 678

Gemma 78

& LifeArchitect.ai/models
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NAS in a world of ever growing models

@ In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.

@ Multi-objective problem with (potentially) conflicting objectives.

- Optimizing all objectives simultaneously is infeasible.
- Finding the right trade-off remains challenging.
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NAS in a world of ever growing models

@ In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.

@ Multi-objective problem with (potentially) conflicting objectives.

- Optimizing all objectives simultaneously is infeasible.
- Finding the right trade-off remains challenging.

@ We also need efficient search methods for these kind of spaces.

- Conventional blackbox methods, such as ES or BO, require multiple
expensive evaluations.
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Optimality in Multi-objective optimization

Pareto optimality and Pareto front

MOO then seeks to find a set of Pareto-optimal solutions a* € A C R? that
jointly minimize L(a) = (£(a), ..., LM (a)):

o € argmin L(«)
acA
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Optimality in Multi-objective optimization

Pareto optimality and Pareto front

MOO then seeks to find a set of Pareto-optimal solutions a* € A C R? that
jointly minimize L(a) = (£(a), ..., LM (a)):

o € argminL(«)
acA

Definition

(Pareto Optimality): A solution ay dominates a; iff L™ (az2) < L™ (aq),

Ym € {1,..., M}, and L(a;) # L(az). In other words, a dominating solution
has a lower loss value on at least one task and no higher loss value on any task.
A solution o is called Pareto optimal iff there exists no other solution
dominating a*.
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Optimality in Multi-objective optimization

Pareto optimality and Pareto front

MOO then seeks to find a set of Pareto-optimal solutions a* € A C R? that
jointly minimize L(a) = (£(a), ..., LM (a)):

o € argminL(«)
acA

Definition

(Pareto Front): The sets of Pareto optimal points and their function values are
called Pareto set (P,) and Pareto front (P, = {L(&)acp, }). respectively.

Definition

(Pareto Criticality): A solution a* € A is called Pareto critical if there is no
common descent direction d € R? such that VL (a*)Td <0, Vi=1,..., M.
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Optimality in Multi-objective optimization

Pareto optimality and Pareto front

MOO then seeks to find a set of Pareto-optimal solutions a* € A C R? that
jointly minimize L(a) = (£(a), ..., LM (a)):

o € argminL(«)
acA
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0.044 —=— NSGA-II
) —s— LS-BO
—e— RS-BO
5 MO-ASHA
o 0.042 QEHVI
S RHPN
=
MODNAS
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Problem Formulation

Multi-objective NAS as bi-level optimization

Assuming we have T hardware devices (target functions) and M objectives
(e.g. accuracy, latency, energy usage, etc.), the Pareto set P,, of the
multi-objective NAS problem is obtained by solving the following bi-level
optimization problem:

arg min LY (w*(a), )
e
sit. w*(a) = argmin L (w, a),
w

where the M-dimensional loss vector Ly(w*, a) := (£} (w*, ), ..., LM (w*, a))
is evaluated Vt € {1,...,T}.
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Problem Formulation

Multi-objective NAS as bi-level optimization

Assuming we have T hardware devices (target functions) and M objectives
(e.g. accuracy, latency, energy usage, etc.), the Pareto set P,, of the
multi-objective NAS problem is obtained by solving the following bi-level
optimization problem:

arg min LY (w*(a), )

sit. w*(a) = argmin L (w, a),
where the M-dimensional loss vector Ly(w*, a) := (£} (w*, ), ..., LM (w*, a))
is evaluated Vt € {1,...,T}.

@ Still expensive: Need to run the search T times.
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MODNAS

Algorithmic components

© MetaPredictor: regression model to predict cheap-to-evaluate hardware
objectives (e.g. latency, energy usage, etc.)

© Supernetwork: proxy to approximate the lower level best response function
w(a)

© MetaHypernetwork: hypernetwork to generate unnormalized architectural
distribution conditioned on preference vectors and hardware device type

@ Architect: samples from the architectural distribution discrete
architectures
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MODNAS

MetaPredictor

@ For the cheap-to-evaluate hardware objectives, such as latency, energy
consumption.
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MODNAS

MetaPredictor

@ For the cheap-to-evaluate hardware objectives, such as latency, energy
consumption.

@ A parametric regression model (e.g. MLP) pj*(a, di*) : A x H — R.
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MODNAS

MetaPredictor

@ For the cheap-to-evaluate hardware objectives, such as latency, energy
consumption.

@ A parametric regression model (e.g. MLP) pj*(a, di*) : A x H — R.
@ Optimize the MSE loss:

mein Eoatmfr) W — P (c, di))?
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MODNAS

MetaPredictor

@ For the cheap-to-evaluate hardware objectives, such as latency, energy
consumption.

@ A parametric regression model (e.g. MLP) pj*(a, di*) : A x H — R.
@ Optimize the MSE loss:

mein Eoatmfr) W — P (c, di))?

@ Use L7'(-,as) = py*(as,di") as the objective function.

e During the search we freeze and do not update further the
MetaPredictor parameters 6.
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MODNAS

MetaHypernetwork

@ We use a hypernetwork
Hg(r,d;) that maps a device -
embedding d; and preference ) [ —
vector r € RM to an
architecture distribution a.

dy
oo

- Just a forward pass to
generate an architecture.

- Scalable across different
hardware devices.
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MODNAS

Linear Scalarization

Using the preference vector r to create a linear scalarization of L; and the
MetaHypernetwork to model the architectural distribution across 1" devices, the
bi-level problem reduces to:

argminE, s [TTLf“”d(W* (), aa)]
3

st. w*(ae) =argminE, s [rTL " (w, as)],
w

where rTL; (-, ag) = an\le rm L7 (+, ag) is the scalarized loss for device ¢.
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MODNAS

Linear Scalarization

Using the preference vector r to create a linear scalarization of L; and the
MetaHypernetwork to model the architectural distribution across 1" devices, the
bi-level problem reduces to:

argminE, s [rTLf“”d(w* (), aa)]
3

st. w*(ae) =argminE, s [rTL " (w, as)],
w

where rTL; (-, ag) = an\le rm L7 (+, ag) is the scalarized loss for device ¢.

@ Conditioning the MetaHypernetwork on the hardware embeddings
generates architectures on new test devices without additional update steps.
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MODNAS

Linear Scalarization

We sample the preference vector r from a Dirichlet distribution with
concentration parameters 51,..., 0y = 1.

B =(0.999,0.999, 0.999) B = (5.000, 5.000, 5.000) B = (2.000, 5.000, 15.000) = (0.100, 0.100, 0.100)

A A
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MODNAS

Optimizing the MetaHypernetwork with MGD

Multiple Gradient Descent (MGD) (Désidéri 2012) aims to find a direction dj. that
maximizes the minimum decrease across the losses by solving:

in (L -L dy)) ~ —n mi VL¢ (o) " di.
max min (Li(ow) — Lo + ndi)) 7 1in max (k) di
Regularizing the norm of dj on the right hand side and minimizing its dual yields the
direction d.
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MODNAS

Optimizing the MetaHypernetwork with MGD

@ Multiple Gradient Descent (MGD) (Désidéri 2012) seeks to simultaneously optimize
the MetaHypernetwork parameters (shared across all devices) ® «— ® — £g%, where:

T
95 =2 i=171 9%
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MODNAS

Optimizing the MetaHypernetwork with MGD

@ Multiple Gradient Descent (MGD) (Désidéri 2012) seeks to simultaneously optimize
the MetaHypernetwork parameters (shared across all devices) ® «— ® — £g%, where:

T
9% = 2i=17 9%
@ Optimal ~;:

2
min {
VLseeoVT
2

T
Z’Ytgfb
t=1

T
Z’Yt = 17’7t Z 07Vt}
t=1
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MODNAS

Optimizing the MetaHypernetwork with MGD

@ Multiple Gradient Descent (MGD) (Désidéri 2012) seeks to simultaneously optimize
the MetaHypernetwork parameters (shared across all devices) ® «— ® — £g%, where:

T
95 =2 i=171 9%

@ Optimal ~;:
T 2 r
min { Z’ytgg Z’yt =1,v > O,Vt}.
T || , =

e T =2 002076 | 970 < 670 and 070 < 070

2 _ 1 \T 2
y*:max(min(w 1)70>

T i .
Hg‘1> 92|, yo0 i Lole-8are o
ool
e T >2: Figure 1: Visualisation of the min-norm point in the convex hull
of two points (min. .1 |78 + (1 — 7)8][3). As the geometry sug-
Frank-Wolfe solver [jaggi, 20131 gests, the solution is either an edge case or a perpendicular vector.
1]
&
2
Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization, Jaggi, ICML 2013 -EE—
&
p=]m8

Figure from: Multi-Task Learning as Multi-Objective Optimization. Sener and Koltun, NeurlPS 2018
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MODNAS

All pieces together

features

==~

Device 1 | [T11
Device 2 : o
. e

: [N
Device T [D:D:
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MODNAS

All pieces together

features

==~

Device 1 | [T11
Device 2 : o
. e

: [N
Device T [D:D:
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MODNAS

All pieces together

Supernet f(-;w,a) (0bj.1)

features
[l
Device 1 | [T11
Device 2 : o

. I

: [
Device T [D:D:
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MODNAS

All pieces together

Supernet f(-;w,a) (0bj.1)

features
[l
Device 1 | [T11
Device 2 : o

. T

MetaPredictor (Obj.2)

MetaPredictor (Obj.M)
M M
Po (“r dy )

: [
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MODNAS

All pieces together

Supernet f(-;w,a) (0bj.1)

features

=N
Device 1 | [T
Device2:|:|:|:|'

. ra

MetaPredictor (0bj.2)

Tm
m

dy

o

MetaPredictor (Obj.M)
M M
Pe (04, dy )

: [N
Device T {Dj:‘; f\gm

Arber Zela Neural Architecture

o= V¢(r,£‘.% +1 LY+t rML{V')

o= Va,(rlll% +1 L3+t rML%")

T

Update @ . '

using MGD: 8o = E}/rgm
:scalarizations f(-;w, @) :supernet
chwembedd.  py(-)  :predictor
:loss He : hypernet

a, @ :arch param
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MODNAS

Optimized MetaHypernetwork

The trained MetaHPN approximates the Pareto front by generating architectures given:
1) preference vectors
~ N 2) device type
\

v, B

Latency Preference

Test Device: %

Accuracy Preference

FPGA

Latency
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Experimental results

Simultaneous Pareto Set Learning across 19 devices for image classification

@ Metric: Hypervolume (HV) indicator. P

@ Baselines:

o Random baselines
e Evolutionary strategies
o Bayesian Optimization

@ Evaluation: Sample 24 preference
vectors and get the MAP
architecture from the

SN — - y
o "
MetaHypernetwork output for et
each of them. TR T ame T e 3 v
—&— RHPN —4— LS —#— LS-BO —==~ Global opt.
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Experimental results

MetaHypernetwork update schemes: robustness of MGD

@ Metric: Hypervolume (HV) indicator over time.

titan_rtx_256

@ Baselines:

Hypervolume

e Mean grad update
e Sequential grad updates
o Grad samples updates

@ Evaluation: Sample 24 preference 0ss -
hY, LEYAD BN
vectors and get the MAP g L VR g
. o 0-85 i . ¥ LA
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Experimental results

Preference vectors and Pareto fr

@ Preference vectors align relatively well with generated Pareto set image.

Pareto Front with Preference Vectors

—— Pareto Front Eyeriss

0.6

0.1+
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Experimental results

Scalability to 3 objectives

Hypervolume

@ Optimize for latency, energy usage

devices.

FPGA
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Experimental results

Pareto front profiling on Transformer spaces for machine translation

@ Transformer search space on the WMT'14 En-De machine translation task.

@ Search costs: 6 days on 8 NVidia RTX A6000
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Experimental results

ImageNet-1k and OpenWebText starting from pretrained models

@ We use a pretrained model on ImageNet and run MODNAS for 8 GPU days.

@ We also evaluate it on a GPT-2 search space.

Al1l00
Average HV (12 devices) for OFA RS
40.8
—=— MOREA
—— LS
—=— NSGA2
363 —e— LSBO
o 2z —+— RSBO
_§ ) 3 ~» MOASHA
g, g8 EHVI
S e MODNAS
2
27.3
22.8
0.2 0.3 0.4 0.5
Energy (Wh)
1]
&
2
e S
zlﬂ
oF

Arber Zela Neural Architecture Search Nov 2024 48



Arber Zela

Linear RNNs for State-tracking
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Linear RNNs solve Parity and Mod Arithmetic

Theorem (Parity)

A finite precision LRNN with finitely many layers as in (1) can solve parity for
arbitrary input lengths, in particular, it can recognize the language (11)*, only if
in at least one layer, there exist x such that A(x) has at least one eigenvalue \
with [A\| > 1 and A ¢ {x €: x > 0}.

H; = A(x;)H;_1 + B(xz;), y;=dec(H;,@;), forallie{l,...,t},

@
HycCc™, AR - B:R' -C"™¢ dec:C"*¢ xR - RP
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Conclusions & Meta-Remarks

@ Optimization and Generalization: Loss landscape in bi-level optimization.

Efficiency: Multi-objective optimization in architecture spaces.

Robustness: Better uncertainty estimation and calibration via NES.

Expressive power: Linear RNNs for state tracking tasks.
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Conclusions & Meta-Remarks

@ Optimization and Generalization: Loss landscape in bi-level optimization.

Efficiency: Multi-objective optimization in architecture spaces.

Robustness: Better uncertainty estimation and calibration via NES.

Expressive power: Linear RNNs for state tracking tasks.

Why do | want to join your group?

© | would like to better understand how such algorithms work.

@ | want to get better in theory, and | think the best and fastest way to
do that is to work with people who are better at it.

© | want to stay in academia.
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Thank you for your attention. Questions?
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