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A Few Words About Me

Apr 1993: Opened my eyes for the first time in Tirana, Albania.

Apr 2015: Moved to Freiburg, Germany for my Master in CS.

Feb 2019: Started my PhD at the University of Freiburg under the
supervision of Frank Hutter.

I am also an ELLIS PhD student co-supervised by Yee Whye Teh (University
of Oxford).

- Spent also 1 year in UK (including industry internship).

During my PhD:

- I worked a lot on improving algorithms that search for architectures of
deep neural networks.

- Mostly empirical and applied to various settings.
- Also adopted a cat.
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Motivation
Why does the architecture matter?

Expressive power: What the model can learn

Optimization: How fast it can learn

- E.g., skip connections for vanishing gradients and smoother loss
landscape.

Generalization: How well it performs on unseen data

- Prior: Search space; architectural preferences (e.g., conv layers for
image data)

- Posterior: Updated belief given training data

Practical implications

- Efficiency: memory usage, inference speed, etc.
- Robustness: to noise, distribution shift, etc.
- Interpretability: simpler models easier to analyze.
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Li et al. Visualizing the Loss Landscape of Neural Nets. In NeurIPS 2018
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How to search for architectures in a more systematic way?
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Agenda

1 Problem Formulation

2 Optimization and Generalization: Differentiable Architecture Search

3 Robustness: Neural Ensemble Search

4 Efficiency: Multi-objective Differentiable Architecture Search

5 Expressivity: Linear RNNs for State-tracking
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Problem Formulation
Bi-level optimization problem

Assume we have a discrete architecture space A, a loss function L, and a dataset
D = Dtrain ∪ Dvalid.

L is a (stochastic) function of both λ ∈ A and w ∈ Rd

Optimizing both LT := L(·;Dtrain) and LV := L(·;Dvalid) corresponds to
a bi-level optimization problem:

min
λ
{L∗

V (λ) := LV (w
∗(λ), λ)} (upper-level)

s.t. w∗(λ) = argmin
w

Ltrain(w, λ), (lower-level)
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D = Dtrain ∪ Dvalid.

L is a (stochastic) function of both λ ∈ A and w ∈ Rd

Optimizing both LT := L(·;Dtrain) and LV := L(·;Dvalid) corresponds to
a bi-level optimization problem:

min
λ
{L∗

V (λ) := LV (w
∗(λ), λ)} (upper-level)

s.t. w∗(λ) = argmin
w

Ltrain(w, λ), (lower-level)

Solvers for the upper-level:

0-th order methods: e.g., evolutionary strategies, Bayesian optimization.

1-th order methods: SGD on continuous relaxation of A using
hypergradients.
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Problem Formulation
Bi-level optimization problem

Lorraine et al. Optimizing Millions of Hyperparameters by Implicit Differentiation. In AISTATS 2020
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Differentiable Architecture Search
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Differentiable Architecture Search (DARTS) [Liu et al. ‘19]

Continuous Relaxation

Between 2 nodes (features maps): Categorical choice for which operation to use.

- Relax discrete space using a convex combination of these choices −→
supernetwork with shared weights between architectures

MixedOp: x(j) =
∑

i<j õ
(i,j)(x(i)) =

∑
i<j

∑
o∈O

eλ
(i,j)
o∑

o′∈O e
λ
(i,j)

o′
o(x(i))

Disctretize back by keeping the operation with the highest λ
0

2

1

(a) Final cell

Liu et al. Neural Architecture Optimization. In NeurIPS 2018
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DARTS: Architecture Optimization

Assume we have a discrete architecture space A, a loss function L, and a dataset
D = Dtrain ∪ Dvalid.

L is a (stochastic) function of both λ ∈ A and w ∈ Rd

Optimizing both LT := L(·;Dtrain) and LV := L(·;Dvalid) corresponds to
a bi-level optimization problem:

min
λ
{L∗

V (λ) := LV (w
∗(λ), λ)} (upper-level)

s.t. w∗(λ) = argmin
w

Ltrain(w, λ), (lower-level)

Approximate w∗(λ) ≈ w − ξ1∇wLT (w, λ)

The optimization alternates between:

1 w← w − ξ1∇wLT (w, λ)
2 λ← λ− ξ2∇λL∗

V (λ)
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Approximate w∗(λ) ≈ w − ξ1∇wLT (w, λ)

The optimization alternates between:

1 w← w − ξ1∇wLT (w, λ)
2 λ← λ− ξ2∇λL∗

V (λ)

where, ∇λL∗
V (λ) ≈ ∇λLV (w

∗, λ)−ξ1∇wLV (w
∗, λ)∇2

w,λLT (w
∗, λ)
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Generalization after discretization
Works quite well on many search spaces

Original CNN space: 8 operations choices between pairs of nodes

28 MixedOPs in total

> 1010 possible architectures

< 3% on CIFAR-10 in less than 1 GPU day of search
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Generalization after discretization
But not always...

S1: This search space uses a different set of two operators per edge.

S2: {3× 3 SepConv, SkipConnect}.
S3: {3× 3 SepConv, SkipConnect, Zero},
S4: {3× 3 SepConv, Noise}.
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Generalization after discretization
Small toy search space

S5: Very small search space with known global optimum.

81 possible architectures trained 3 independent times using the default DARTS
settings.

Test performance after discretization diverges.
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Loss landscape
Sharp vs. flat minima

What is an indicator that the found solutions generalize after discretization?

Flatness/sharpness of minima, e.g. in large vs. small batch size training of NN, is
a good indicator of generalization.
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Loss landscape
Sharp vs. flat minima

What is an indicator that the found solutions generalize after discretization?

Flatness/sharpness of minima, e.g. in large vs. small batch size training of NN, is
a good indicator of generalization.

Keskar et al. On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. In ICLR 2017
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How the curvature relates with generalization?

Sharp minima much more sensitive to variations in the input space after
discretization.

Discretization via argmax: λ∗
o = [3.2, 1.1, 2.5] −→ λdisc

o = [1, 0, 0].
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Generalization of architectures and sharpness of minimas

Compute the full Hessian ∇2
λLV on a randomly sampled mini-batch from the

validation set.

The dominant EV starts increasing at the point where the architecture
generalization error starts increasing.

High correlation between generalization and the dominant eigenvalue (EV).
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Generalization of architectures and sharpness of minimas

Compute the full Hessian ∇2
λLV on a randomly sampled mini-batch from the
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Regularizing the Lower-level Problem
Improved generalization

If lower-level problem strongly convex, convergence of upper-level guaranteed
under suitable step size conditions and smoothness.
Increasing the L2 regularization in the lower-level −→ narrower and more convex
basins towards w + smoother landscape.
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Heuristics
Early Stopping and Adaptive Regularization

Goal: Keep the dominant eigenvalue to a low value (or at least return a solution
before it increases). If the λmax(i− k)/λmax(i) < 3/4:

Early stop. Roll back and increase regularization.
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Neural Ensemble Search
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Quantifying Uncertainty in Deep Learning
Why are they important?

Predictive uncertainty can be for instance the output label together with
the confidence of that prediction in classification

Good uncertainty estimates quantify how much we can trust our model’s
predictions

Some applications where uncertainty quantification is important are:

- Cost-sensitive decision making (healthcare e.g. medical imaging;
self-driving cars; robotics)

- Dealing with distribution shift (Feature skew between train and test
sets; test inputs do not belong to any of the training classes)

- Safe exploration in RL, etc.

Ideally we want a system that knows what it doesn’t know.
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Calibration and Robustness to dataset shift
Are deep neural networks calibrated and robust to OOD data?

Calibration tells us how well the predicted confidence (probability of
correctness) of the model aligns with the observed accuracy (frequency of
correctness).

E.g. in image classification: if the correct predicted class was always with
80% probability, then a perfectly calibrated system would imply that on 80%
of the examples it predicted the true class.

Usually neural networks are not well-calibrated making overconfident or
underconfident predictions

Moreover, they are fragile, i.e. they do not have high uncertainty on
out-of-distribution (OOD) inputs.
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Ensembles of Neural Networks
Deep Ensembles

Ensembles of networks are commonly used to boost performance.

Recent interest in ensembles has been due to their strong predictive
uncertainty estimation and robustness to distributional shift.
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Ensembles of Neural Networks
Deep Ensembles

Ensembles of networks are commonly used to boost performance.

Recent interest in ensembles has been due to their strong predictive
uncertainty estimation and robustness to distributional shift.

Figure: (from Lakshminarayanan et al. 2017)
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Ensembles of Neural Networks
Deep Ensembles

Ensembles of networks are commonly used to boost performance.

Recent interest in ensembles has been due to their strong predictive
uncertainty estimation and robustness to distributional shift.

Deep ensembles [Lakshminarayanan et al. 2017], only ensemble predictions
coming from the same fixed architecture as follows:

1 Independently train multiple copies of a fixed architecture with random
initializations.

2 Create an ensemble by averaging outputs, i.e. predicted distribution
over the classes (in the case of classification).
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Ensembles of Neural Networks
Deep Ensembles

Ensembles of networks are commonly used to boost performance.

Recent interest in ensembles has been due to their strong predictive
uncertainty estimation and robustness to distributional shift.

Deep ensembles [Lakshminarayanan et al. 2017], only ensemble predictions
coming from the same fixed architecture as follows:

1 Independently train multiple copies of a fixed architecture with random
initializations.

2 Create an ensemble by averaging outputs, i.e. predicted distribution
over the classes (in the case of classification).

Diversity among the base learners’ predictions is believed to be key for
strong ensembles.
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Ensembles of neural networks
On diversity in ensembles

Notation: fθ is a network with weights θ, and ℓ(fθ(x), y) is the loss for
(x, y). Define the ensemble of M networks fθ1 , . . . , fθM by

F (x) = 1
M

∑M
i=1 fθi(x).

Average base learner loss: 1
M

∑M
i=1 ℓ(fθi(x), y).

Oracle ensemble: given fθ1 , . . . , fθM , the oracle ensemble FOE is defined as

FOE(x) = fθk(x), where k ∈ argmin
i

ℓ(fθi(x), y).

As a rule of thumb, small oracle ensemble loss indicates more diverse base
learner predictions.
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Ensembles of neural networks
On diversity in ensembles

Proposition

Suppose ℓ is negative log-likelihood (NLL). Then, the oracle ensemble loss,
ensemble loss, and average base learner loss satisfy the following inequality:

ℓ(FOE(x), y) ≤ ℓ(F (x), y) ≤ 1

M

M∑
i=1

ℓ(fθi(x), y).

Proof.

Taking ℓ(f(x), y)) = − log [f(x)]y (convex function), it follows direct by applying
Jensen’s inequality for the right inequality and definition of oracle ensemble for
the left one.

[f(x)]y is the probability assigned by the network f of x belonging to the true class y.
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Varying vs. fixed base learner architectures
Visualizing base learner predictions using t-SNE on CIFAR-10
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Figure: Left: Predictions of 5 different archs, each trained with 20 different inits. Right:
Predictions of base learners in an ensemble with varying archs (found using NES) vs. fixed arch
(deep ensemble of optimized arch).
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Neural Ensemble Search
General approach

Let fθ,λ denote a network with arch λ ∈ A and weights θ. Computational budget
denoted by K and ensemble size by M . We want to solve:

min
λ1,...,λM∈A

L (Ensemble(fθ1,λ1
, . . . , fθM ,λM

),Dval)

s.t. θi ∈ argmin
θ
L(fθ,λi

,Dtrain) for i = 1, . . . ,M

Our approach for finding base learner architectures that optimize ensemble
performance consists of two steps.

1 Pool building: build a pool = {fθ1,λ1 , . . . , fθK ,λK
} of size K consisting of

potential base learners, where each fθi,λi is a network trained independently
on Dtrain.

2 Ensemble selection: select M base learners fθ∗
1 ,λ

∗
1
, . . . , fθ∗

M ,λ∗
M

from to
form an ensemble which minimizes loss on Dval. (We assume K ≥M .)

Arber Zela Neural Architecture Search Nov 2024 27



Neural Ensemble Search
NES-RS and NES-RE

NES-RS is a simple random search (RS) based approach: we build the pool
by sampling K architectures uniformly at random.

NES-RE uses regularized evolution (RE) [Real et al. 2019] to evolve a
population of architectures until the budget K is reached.

For step 2, we use forward step-wise selection without replacement: given
pool , start with an empty ensemble and add to it the network from which
minimizes ensemble loss on Dval. We repeat this without replacement until
the ensemble is of size M . (Caruana et al., 2004)
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Neural Ensemble Search
Results on common image classification benchmarks

Results on NAS-Bench-201 [Dong et al. 2020].

- Ensembles from NES better than deep ensembles of the global
minimum.

- Better calibrated on dataset shift.
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Results on NAS-Bench-201 [Dong et al. 2020].
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Multi-objective Differentiable Architecture Search
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NAS in a world of ever growing models

In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.
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NAS in a world of ever growing models

In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.

Small
Palmyra 20B
C1.2
Retro 48B
MPT-30B
Command-R  35B
Yi-34B
Mixtral 8x7B
…

Olympus
2T (2024)

LARGE LANGUAGE MODEL HIGHLIGHTS (MAR/2024) 

LifeArchitect.ai/models

Parameters

AI lab/group⃡
Sizes linear to scale. Selected highlights only. All models are available. All models are Chinchilla-aligned (20:1 tokens:parameters) https://lifearchitect.ai/chinchilla/ All 300+ models: https://lifearchitect.ai/models-table/ Alan D. Thompson. 2023-2024.

ERNIE 4.0
1T

GPT-4
1.76T MoE

Gemini Ultra 1.0 
1.5T

Claude 3 Opus
2T

Next…
(2024)

30B 70B 180B

ChatGPT
gpt-3.5-turbo 20B

Large
Yuan 2.0 102.6B
InternLM 104B
Jurassic-2  
Falcon 180B
Claude 2.1
Mistral-medium
…

Gemini Pro 180B

Nano
Mamba  2.8B
phi-2  2.7B
…

XS
Pythia 12B
Mistral 7B
Zephyr 7.3B
Gauss
StripedHyena 7B
Persimmon-8B
DeciLM-7B
SOLAR 10.7B
Gemma 7B

PaLM 2
340B

Inflection-2.5Grok-1
314B

Medium
Command  52B
StableLM 65B
Llama 1  65B
Luminous Supreme 
Llama 2 70B
Perplexity 70B Online
Qwen-72B
DeepSeek 67B
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NAS in a world of ever growing models

In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.

Multi-objective problem with (potentially) conflicting objectives.

- Optimizing all objectives simultaneously is infeasible.
- Finding the right trade-off remains challenging.
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NAS in a world of ever growing models

In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.

Multi-objective problem with (potentially) conflicting objectives.

- Optimizing all objectives simultaneously is infeasible.
- Finding the right trade-off remains challenging.

We also need efficient search methods for these kind of spaces.

- Conventional blackbox methods, such as ES or BO, require multiple
expensive evaluations.
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Optimality in Multi-objective optimization
Pareto optimality and Pareto front

MOO then seeks to find a set of Pareto-optimal solutions α∗ ∈ A ⊂ Rd that
jointly minimize L(α) = (L1(α), . . . ,LM (α)):

α∗ ∈ argmin
α∈A

L(α)
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Optimality in Multi-objective optimization
Pareto optimality and Pareto front

MOO then seeks to find a set of Pareto-optimal solutions α∗ ∈ A ⊂ Rd that
jointly minimize L(α) = (L1(α), . . . ,LM (α)):

α∗ ∈ argmin
α∈A

L(α)

Definition

(Pareto Optimality): A solution α2 dominates α1 iff Lm(α2) ≤ Lm(α1),
∀m ∈ {1, . . . ,M}, and L(α1) ̸= L(α2). In other words, a dominating solution
has a lower loss value on at least one task and no higher loss value on any task.
A solution α∗ is called Pareto optimal iff there exists no other solution
dominating α∗.
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Optimality in Multi-objective optimization
Pareto optimality and Pareto front

MOO then seeks to find a set of Pareto-optimal solutions α∗ ∈ A ⊂ Rd that
jointly minimize L(α) = (L1(α), . . . ,LM (α)):

α∗ ∈ argmin
α∈A

L(α)

Definition

(Pareto Front): The sets of Pareto optimal points and their function values are
called Pareto set (Pα) and Pareto front (PL = {L(α)α∈Pα

}), respectively.

Definition

(Pareto Criticality): A solution α∗ ∈ A is called Pareto critical if there is no
common descent direction d ∈ Rd such that ∇Li(α∗)⊤d < 0, ∀i = 1, . . . ,M .
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Optimality in Multi-objective optimization
Pareto optimality and Pareto front

MOO then seeks to find a set of Pareto-optimal solutions α∗ ∈ A ⊂ Rd that
jointly minimize L(α) = (L1(α), . . . ,LM (α)):

α∗ ∈ argmin
α∈A

L(α)
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Problem Formulation
Multi-objective NAS as bi-level optimization

Assuming we have T hardware devices (target functions) and M objectives
(e.g. accuracy, latency, energy usage, etc.), the Pareto set Pαt

of the
multi-objective NAS problem is obtained by solving the following bi-level
optimization problem:

argmin
α

Lvalid
t (w∗(α), α)

s.t. w∗(α) = argmin
w

Ltrain
t (w, α),

where the M -dimensional loss vector Lt(w
∗, α) :=

(
L1
t (w

∗, α), . . . ,LM
t (w∗, α)

)
is evaluated ∀t ∈ {1, . . . , T}.
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Problem Formulation
Multi-objective NAS as bi-level optimization

Assuming we have T hardware devices (target functions) and M objectives
(e.g. accuracy, latency, energy usage, etc.), the Pareto set Pαt

of the
multi-objective NAS problem is obtained by solving the following bi-level
optimization problem:

argmin
α

Lvalid
t (w∗(α), α)

s.t. w∗(α) = argmin
w

Ltrain
t (w, α),

where the M -dimensional loss vector Lt(w
∗, α) :=

(
L1
t (w

∗, α), . . . ,LM
t (w∗, α)

)
is evaluated ∀t ∈ {1, . . . , T}.

Still expensive: Need to run the search T times.
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MODNAS
Algorithmic components

1 MetaPredictor: regression model to predict cheap-to-evaluate hardware
objectives (e.g. latency, energy usage, etc.)

2 Supernetwork: proxy to approximate the lower level best response function
w∗(α)

3 MetaHypernetwork: hypernetwork to generate unnormalized architectural
distribution conditioned on preference vectors and hardware device type

4 Architect: samples from the architectural distribution discrete
architectures
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MODNAS
MetaPredictor

For the cheap-to-evaluate hardware objectives, such as latency, energy
consumption.

A parametric regression model (e.g. MLP) pmθ (α, dmt ) : A×H → R.

Optimize the MSE loss:

min
θ

Eα∼A,t∼[T ]
(ymt − pmθ (α, dmt ))2

Use Lm
t (·, αΦ) = pmθ (αΦ, d

m
t ) as the objective function.

During the search we freeze and do not update further the
MetaPredictor parameters θ.

HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning, Lee et al. NeurIPS 2021
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MODNAS
MetaHypernetwork

We use a hypernetwork
HΦ(r, dt) that maps a device
embedding dt and preference
vector r ∈ RM to an
architecture distribution α̃.

- Just a forward pass to
generate an architecture.

- Scalable across different
hardware devices.

*
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MODNAS
Linear Scalarization

Using the preference vector r to create a linear scalarization of Lt and the
MetaHypernetwork to model the architectural distribution across T devices, the
bi-level problem reduces to:

argmin
Φ

Er∼S
[
rTLvalid

t (w∗(αΦ), αΦ)
]

s.t. w∗(αΦ) = argmin
w

Er∼S
[
rTLtrain

t (w, αΦ)
]
,

where rTLt(·, αΦ) =
∑M

m=1 rmLm
t (·, αΦ) is the scalarized loss for device t.
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MODNAS
Linear Scalarization

Using the preference vector r to create a linear scalarization of Lt and the
MetaHypernetwork to model the architectural distribution across T devices, the
bi-level problem reduces to:

argmin
Φ

Er∼S
[
rTLvalid

t (w∗(αΦ), αΦ)
]

s.t. w∗(αΦ) = argmin
w

Er∼S
[
rTLtrain

t (w, αΦ)
]
,

where rTLt(·, αΦ) =
∑M

m=1 rmLm
t (·, αΦ) is the scalarized loss for device t.

Conditioning the MetaHypernetwork on the hardware embeddings
generates architectures on new test devices without additional update steps.
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MODNAS
Linear Scalarization

We sample the preference vector r from a Dirichlet distribution with
concentration parameters β1, . . . , βM = 1.

 = (0.999, 0.999, 0.999)  = (5.000, 5.000, 5.000)  = (2.000, 5.000, 15.000)  = (0.100, 0.100, 0.100)
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MODNAS
Optimizing the MetaHypernetwork with MGD

Multiple Gradient Descent (MGD) (Désidéri 2012) aims to find a direction dk that
maximizes the minimum decrease across the losses by solving:

max
d∈Rd

min
t∈[T ]

(
Lt(αk)− L(αk + ηdk)

)
≈ −η min

d∈Rd
max
t∈[T ]

∇Lt(αk)
⊤dk.

Regularizing the norm of dk on the right hand side and minimizing its dual yields the
direction dk.
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MODNAS
Optimizing the MetaHypernetwork with MGD

Multiple Gradient Descent (MGD) (Désidéri 2012) seeks to simultaneously optimize
the MetaHypernetwork parameters (shared across all devices) Φ← Φ− ξg∗Φ, where:

g∗Φ =
∑T

t=1 γ
∗
t g

t
Φ
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MODNAS
Optimizing the MetaHypernetwork with MGD

Multiple Gradient Descent (MGD) (Désidéri 2012) seeks to simultaneously optimize
the MetaHypernetwork parameters (shared across all devices) Φ← Φ− ξg∗Φ, where:

g∗Φ =
∑T

t=1 γ
∗
t g

t
Φ

Optimal γ∗
t :

min
γ1,...,γT

{∥∥∥∥∥
T∑

t=1

γtg
t
Φ

∥∥∥∥∥
2

2

∣∣∣∣ T∑
t=1

γt = 1, γt ≥ 0, ∀t
}
.
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MODNAS
Optimizing the MetaHypernetwork with MGD

Multiple Gradient Descent (MGD) (Désidéri 2012) seeks to simultaneously optimize
the MetaHypernetwork parameters (shared across all devices) Φ← Φ− ξg∗Φ, where:

g∗Φ =
∑T

t=1 γ
∗
t g

t
Φ

Optimal γ∗
t :

min
γ1,...,γT

{∥∥∥∥∥
T∑

t=1

γtg
t
Φ

∥∥∥∥∥
2

2

∣∣∣∣ T∑
t=1

γt = 1, γt ≥ 0, ∀t
}
.

T = 2:

γ
∗

= max

(
min

( (g2Φ − g1Φ)Tg2Φ∥∥∥g1Φ − g2Φ

∥∥∥2
2

, 1
)
, 0

)

T > 2:

Frank-Wolfe solver [Jaggi, 2013]

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization, Jaggi, ICML 2013

Figure from: Multi-Task Learning as Multi-Objective Optimization. Sener and Koltun, NeurIPS 2018

Arber Zela Neural Architecture Search Nov 2024 40



MODNAS
All pieces together
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MODNAS
Optimized MetaHypernetwork

The trained MetaHPN approximates the Pareto front by generating architectures given:

1) preference vectors

2) device type
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Experimental results
Simultaneous Pareto Set Learning across 19 devices for image classification

Metric: Hypervolume (HV) indicator.

Baselines:

Random baselines
Evolutionary strategies
Bayesian Optimization

Evaluation: Sample 24 preference
vectors and get the MAP
architecture from the
MetaHypernetwork output for
each of them.
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Experimental results
MetaHypernetwork update schemes: robustness of MGD

Metric: Hypervolume (HV) indicator over time.

Baselines:

Mean grad update
Sequential grad updates
Grad samples updates

Evaluation: Sample 24 preference
vectors and get the MAP
architecture from the
MetaHypernetwork output for
each of them.
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Experimental results
Preference vectors and Pareto front

Preference vectors align relatively well with generated Pareto set image.
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Experimental results
Scalability to 3 objectives

Optimize for latency, energy usage and accuracy simultaneously across
devices.
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Experimental results
Pareto front profiling on Transformer spaces for machine translation

Transformer search space on the WMT’14 En-De machine translation task.

Search costs: 6 days on 8 NVidia RTX A6000
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Experimental results
ImageNet-1k and OpenWebText starting from pretrained models

We use a pretrained model on ImageNet and run MODNAS for 8 GPU days.

We also evaluate it on a GPT-2 search space.
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Linear RNNs for State-tracking
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Linear RNNs solve Parity and Mod Arithmetic

Theorem (Parity)

A finite precision LRNN with finitely many layers as in (1) can solve parity for
arbitrary input lengths, in particular, it can recognize the language (11)∗, only if
in at least one layer, there exist x such that A(x) has at least one eigenvalue λ
with |λ| ≥ 1 and λ /∈ {x ∈ : x ≥ 0}.
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Conclusions and Meta-Remarks
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Conclusions & Meta-Remarks

Optimization and Generalization: Loss landscape in bi-level optimization.

Efficiency: Multi-objective optimization in architecture spaces.

Robustness: Better uncertainty estimation and calibration via NES.

Expressive power: Linear RNNs for state tracking tasks.

Why do I want to join your group?

1 I would like to better understand how such algorithms work.
2 I want to get better in theory, and I think the best and fastest way to

do that is to work with people who are better at it.
3 I want to stay in academia.
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Thank you for your attention. Questions?

Arber Zela Neural Architecture Search Nov 2024 53


