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NAS in a world of ever growing models

In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.
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NAS in a world of ever growing models

In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.

Multi-objective problem with (potentially) conflicting objectives.

- Optimizing all objectives simultaneously is infeasible.
- Finding the right trade-off remains challenging.
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NAS in a world of ever growing models

In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.

Multi-objective problem with (potentially) conflicting objectives.

- Optimizing all objectives simultaneously is infeasible.
- Finding the right trade-off remains challenging.

We also need efficient search methods for these kind of spaces.

- Conventional blackbox methods, such as ES or BO, require multiple
expensive evaluations.

Multi-objective Differentiable NAS (MODNAS)

- Leverages hypernetworks and multiple gradient descent (MGD) to
profile the whole pareto front.

- Scales across multiple devices and objectives with a single search run.
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Optimality in Multi-objective optimization
Pareto optimality and Pareto front

MOO then seeks to find a set of Pareto-optimal solutions α∗ that jointly
minimize L(α) ≜ (L1(α), . . . ,LM (α)):

α∗ ∈ argmin
α

L(α)
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Optimality in Multi-objective optimization
Pareto optimality and Pareto front

MOO then seeks to find a set of Pareto-optimal solutions α∗ that jointly
minimize L(α) ≜ (L1(α), . . . ,LM (α)):

α∗ ∈ argmin
α

L(α)

Definition

(Pareto Optimality): A solution α2 dominates α1 iff Lm(α2) ≤ Lm(α1),
∀m ∈ {1, . . . ,M}, and L(α1) ̸= L(α2). In other words, a dominating
solution has a lower loss value on at least one task and no higher loss
value on any task. A solution α∗ is called Pareto optimal iff there exists no
other solution dominating α∗.
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Optimality in Multi-objective optimization
Pareto optimality and Pareto front

MOO then seeks to find a set of Pareto-optimal solutions α∗ that jointly
minimize L(α) ≜ (L1(α), . . . ,LM (α)):

α∗ ∈ argmin
α

L(α)

Definition

(Pareto Front): The sets of Pareto optimal points and their function
values are called Pareto set (Pα) and Pareto front (PL = {L(α)α∈Pα}),
respectively.
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Optimality in Multi-objective optimization
Pareto optimality and Pareto front

MOO then seeks to find a set of Pareto-optimal solutions α∗ that jointly
minimize L(α) ≜ (L1(α), . . . ,LM (α)):

α∗ ∈ argmin
α

L(α)
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Problem Formulation
Multi-objective NAS as bi-level optimization

Assuming we have T hardware devices (target functions) and M
objectives (e.g. accuracy, latency, energy usage, etc.), the Pareto set Pαt

of the multi-objective NAS problem is obtained by solving the following
bi-level optimization problem:

argmin
α

Lvalid
t (w∗(α), α)

s.t. w∗(α) = argmin
w

Ltrain
t (w, α),

where the M -dimensional loss vector
Lt(w

∗, α) ≜
(
L1
t (w

∗, α), . . . ,LM
t (w∗, α)

)
is evaluated ∀t ∈ {1, . . . , T}.

MODNAS February 24, 2025 4



Problem Formulation
Multi-objective NAS as bi-level optimization

Assuming we have T hardware devices (target functions) and M
objectives (e.g. accuracy, latency, energy usage, etc.), the Pareto set Pαt

of the multi-objective NAS problem is obtained by solving the following
bi-level optimization problem:

argmin
α

Lvalid
t (w∗(α), α)

s.t. w∗(α) = argmin
w

Ltrain
t (w, α),

where the M -dimensional loss vector
Lt(w

∗, α) ≜
(
L1
t (w

∗, α), . . . ,LM
t (w∗, α)

)
is evaluated ∀t ∈ {1, . . . , T}.

Still expensive...

- Need to run the search T times.
- Cannot be solved exactly due to the expensive lower problem.
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MODNAS
Algorithmic components

1 MetaPredictor: regression model to predict cheap-to-evaluate
hardware objectives (e.g. latency, energy usage, etc.)

2 Supernetwork: proxy to approximate the lower level best response
function w∗(α)

3 MetaHypernetwork: hypernetwork to generate unnormalized
architectural distribution conditioned on preference vectors and
hardware device type

4 Architect: samples from the architectural distribution discrete
architectures
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MODNAS
MetaPredictor

For the cheap-to-evaluate hardware objectives, such as latency, energy
consumption.

A parametric regression model (e.g. MLP) pmθ (α, dmt ) : A×H → R.
We use the same predictors as in [1] and optimize the MSE loss:

min
θ

Eα∼A,t∼[T ]
(ymt − pmθ (α, dmt ))2

Use Lm
t (·, αΦ) = pmθ (αΦ, d

m
t ) as the objective function.

During the search we freeze and do not update further the
MetaPredictor parameters θ.

[1] HELP: Hardware-adaptive Efficient Latency Prediction for NAS via Meta-Learning, Lee et al. NeurIPS 2021
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MODNAS
MetaHypernetwork

We use a hypernetwork
HΦ(r, dt) that takes as
input a device embedding
dt and a preference vector
r ∈ RM to yield an
architecture distribution α̃.

- Just a forward pass to
generate an architecture.

- Scalable across different
hardware devices.

*
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MODNAS
Linear Scalarization

Using the preference vector r to create a linear scalarization of Lt and the
MetaHypernetwork to model the architectural distribution across T devices, the
bi-level problem reduces to:

argmin
Φ

Er∼S
[
rTLvalid

t (w∗(αΦ), αΦ)
]

s.t. w∗(αΦ) = argmin
w

Er∼S
[
rTLtrain

t (w, αΦ)
]
,

where rTLt(·, αΦ) =
∑M

m=1 rmLm
t (·, αΦ) is the scalarized loss for device t.

The trained MetaHPN approximates the Pareto front by generating architectures given:

1) preference vectors

2) device type
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MODNAS
Linear Scalarization

Using the preference vector r to create a linear scalarization of Lt and the
MetaHypernetwork to model the architectural distribution across T devices, the
bi-level problem reduces to:

argmin
Φ

Er∼S
[
rTLvalid

t (w∗(αΦ), αΦ)
]

s.t. w∗(αΦ) = argmin
w

Er∼S
[
rTLtrain

t (w, αΦ)
]
,

where rTLt(·, αΦ) =
∑M

m=1 rmLm
t (·, αΦ) is the scalarized loss for device t.

Conditioning the MetaHypernetwork on the hardware embeddings allows us
to generate architectures on new test devices without extra finetuning or
meta-learning steps.
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MODNAS
Linear Scalarization

We sample the preference vector r from a Dirichlet distribution with
concentration parameters β1, . . . , βM = 1.

 = (0.999, 0.999, 0.999)  = (5.000, 5.000, 5.000)  = (2.000, 5.000, 15.000)  = (0.100, 0.100, 0.100)

MODNAS February 24, 2025 9



MODNAS
Optimizing the MetaHypernetwork with MGD

Multiple Gradient Descent (MGD) seeks to simultaneously optimize the
MetaHypernetwork parameters (shared across all devices) Φ← Φ− ξg∗Φ, where:
g∗Φ =

∑T
t=1 γ

∗
t g

t
Φ
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MODNAS
Optimizing the MetaHypernetwork with MGD

Multiple Gradient Descent (MGD) seeks to simultaneously optimize the
MetaHypernetwork parameters (shared across all devices) Φ← Φ− ξg∗Φ, where:
g∗Φ =

∑T
t=1 γ

∗
t g

t
Φ

What are the optimal γ∗
t ?

min
γ1,...,γT

{∥∥∥∥∥
T∑

t=1

γtg
t
Φ

∥∥∥∥∥
2

2

∣∣∣∣ T∑
t=1

γt = 1, γt ≥ 0, ∀t
}
.
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MODNAS
Optimizing the MetaHypernetwork with MGD

Multiple Gradient Descent (MGD) seeks to simultaneously optimize the
MetaHypernetwork parameters (shared across all devices) Φ← Φ− ξg∗Φ, where:
g∗Φ =

∑T
t=1 γ

∗
t g

t
Φ

What are the optimal γ∗
t ?

min
γ1,...,γT

{∥∥∥∥∥
T∑

t=1

γtg
t
Φ

∥∥∥∥∥
2

2

∣∣∣∣ T∑
t=1

γt = 1, γt ≥ 0, ∀t
}
.

T = 2:

γ
∗

= max

(
min

( (g2Φ − g1Φ)Tg2Φ∥∥∥g1Φ − g2Φ

∥∥∥2
2

, 1
)
, 0

)

T > 2:

Frank-Wolfe solver [Jaggi, 2013]

Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization, Jaggi, ICML 2013

Figure from: Multi-Task Learning as Multi-Objective Optimization. Sener and Koltun, NeurIPS 2018
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MODNAS
All pieces together
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Experimental results
Simultaneous Pareto Set Learning across 19 devices on NB201

Metric: Hypervolume (HV) indicator.

Baselines:

Random baselines
Evolutionary strategies
Bayesian Optimization

Evaluation: Sample 24 preference
vectors and get the MAP
architecture from the
MetaHypernetwork output for
each of them.
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Experimental results
MetaHypernetwork update schemes: robustness of MGD

Metric: Hypervolume (HV) indicator over time.

Baselines:

Mean grad update
Sequential grad updates
Grad samples updates

Evaluation: Sample 24 preference
vectors and get the MAP
architecture from the
MetaHypernetwork output for
each of them.
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Experimental results
Scalability to 3 objectives

Optimize for latency, energy usage and accuracy simultaneously across
devices.
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Experimental results
Pareto front profiling on Transformer Spaces

We run MODNAS on the Hardware-Aware Transformer (HAT) [Wang et al.

2020] search space on the WMT’14 En-De machine translation task.

Search costs: 6 days on 8 NVidia RTX A6000
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Experimental results
Efficient MOO on ImageNet-1k and OpenWebText starting from Pretrained
Supernetworks

We use the Once-for-All (OFA) [Cai et al. 2020] pretrained supernet on
ImageNet and run MODNAS for 1 day on 8 GPUs.

We also use HW-GPT-Bench texttt[Sukthanker et al. 2024] to run MODNAS on a
GPT-2 search space.

Higher HV compared to baselines.
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Summary and future directions

MODNAS can profile the pareto front of various objective spaces.

Via a hypernetwork and MGD, MODNAS can optimize
simultaneously across many devices (up to 19) and multiple objectives
(up to 3).

We show improved hypervolume on test devices across various
spaces, tasks and datasets, without additional fine-tuning and with
less search costs.

https://arxiv.org/pdf/2402.18213

Extend MODNAS to work in the Few-shot NAS settings with
subspace partitions.

More control on the preference vector sampler during search.
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Thank you for your attention.
Questions?
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