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NAS in a world of ever growing models

@ In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.
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NAS in a world of ever growing models

@ In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.

LARGE LANGUAGE MODEL HIGHLIGHTS (MAR/2024) i

©Nano oxs o Small @ Medium Large
Mamba 288 Pythia 128 Palmyra 208 Command 528 Yuan 20 10268

phi-2 278 Mistral 78 c12 StableLM 658

InternLM 1048

Zephyr 7.3B Retro 488 658 Jurassic-2 o

Gauss MPT-308 Luminous Supreme Falcon 1808

StripedHyena 78 Command-R 358 70B Claude 2.1

Persimmon-88 Yi-348 Perplexity 708 Online Mistral-medium -
DecilM-78 Mixtral 8x78 Qwen-72B a3
SOLAR 1078 DeepSeek 678

Gemma 78

& LifeArchitect.ai/models
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NAS in a world of ever growing models

@ In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.

@ Multi-objective problem with (potentially) conflicting objectives.

- Optimizing all objectives simultaneously is infeasible.
- Finding the right trade-off remains challenging.

UNI
1

FREIBURG

MODNAS February 24, 2025

N



NAS in a world of ever growing models

@ In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.

@ Multi-objective problem with (potentially) conflicting objectives.

- Optimizing all objectives simultaneously is infeasible.
- Finding the right trade-off remains challenging.

@ We also need efficient search methods for these kind of spaces.

- Conventional blackbox methods, such as ES or BO, require multiple
expensive evaluations.
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NAS in a world of ever growing models

@ In an age of large models, finding architectures which are performant,
efficient and with fast inference times is pivotal.

@ Multi-objective problem with (potentially) conflicting objectives.

- Optimizing all objectives simultaneously is infeasible.
- Finding the right trade-off remains challenging.

@ We also need efficient search methods for these kind of spaces.

- Conventional blackbox methods, such as ES or BO, require multiple
expensive evaluations.

@ Multi-objective Differentiable NAS (MODNAS)

- Leverages hypernetworks and multiple gradient descent (MGD) to
profile the whole pareto front.
- Scales across multiple devices and objectives with a single search run.
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Optimality in Multi-objective optimization

Pareto optimality and Pareto front

MOO then seeks to find a set of Pareto-optimal solutions a* that jointly
minimize L(a) £ (£Y(a), ..., LM (a)):

a* € arg min L(«)
[e%
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Optimality in Multi-objective optimization

Pareto optimality and Pareto front

MOOQ then seeks to find a set of Pareto-optimal solutions o* that jointly
minimize L(a) £ (£Y(a), ..., LM (a)):

a* € arg min L(«)
[e%

Definition

(Pareto Optimality): A solution ay dominates « iff L™ (ag) < L™ (1),
Vm € {1,...,M}, and L(a1) # L(az). In other words, a dominating
solution has a lower loss value on at least one task and no higher loss
value on any task. A solution o* is called Pareto optimal iff there exists no
other solution dominating ™.
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Optimality in Multi-objective optimization

Pareto optimality and Pareto front

MOOQ then seeks to find a set of Pareto-optimal solutions o* that jointly
minimize L(a) £ (£Y(a), ..., LM (a)):

a* € arg min L(«)
[e%

Definition

(Pareto Front): The sets of Pareto optimal points and their function
values are called Pareto set (P,) and Pareto front (Pr, = {L(a)acp, }).
respectively.

UNI
1

FREIBURG

w

MODNAS February 24, 2025



Optimality in Multi-objective optimization

Pareto optimality and Pareto front

MOO then seeks to find a set of Pareto-optimal solutions a* that jointly
minimize L(a) £ (£Y(a), ..., LM (a)):

o € argmin L(«)
[e%
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Problem Formulation

Multi-objective NAS as bi-level optimization

Assuming we have T hardware devices (target functions) and M
objectives (e.g. accuracy, latency, energy usage, etc.), the Pareto set P,,

of the multi-objective NAS problem is obtained by solving the following
bi-level optimization problem:

arg min LY (w*(a), )
«

s.t. w*(a) = argmin LI (w, o),
w

where the M-dimensional loss vector
Li(w*,a) £ (£} (w*, a),..., LM (w*, ) is evaluated Vt € {1,...,T}.
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Problem Formulation

Multi-objective NAS as bi-level optimization

Assuming we have T hardware devices (target functions) and M
objectives (e.g. accuracy, latency, energy usage, etc.), the Pareto set P,,

of the multi-objective NAS problem is obtained by solving the following
bi-level optimization problem:

arg min LY (w*(a), )
«
s.t. w*(a) = argmin LI (w, o),
w
where the M-dimensional loss vector
Li(w*,a) £ (£} (w*, a),..., LM (w*, ) is evaluated Vt € {1,...,T}.

@ Still expensive...

- Need to run the search T times.
- Cannot be solved exactly due to the expensive lower problem.
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MODNAS

Algorithmic components

© MetaPredictor: regression model to predict cheap-to-evaluate
hardware objectives (e.g. latency, energy usage, etc.)

@ Supernetwork: proxy to approximate the lower level best response
function w*(«)

© MetaHypernetwork: hypernetwork to generate unnormalized
architectural distribution conditioned on preference vectors and
hardware device type

@ Architect: samples from the architectural distribution discrete
architectures

UNI
1

FREIBURG

MODNAS February 24, 2025

o



MODNAS

MetaPredictor

@ For the cheap-to-evaluate hardware objectives, such as latency, energy
consumption.
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MODNAS

MetaPredictor

@ For the cheap-to-evaluate hardware objectives, such as latency, energy
consumption.

@ A parametric regression model (e.g. MLP) pp*(c,d") : A x H — R.
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MODNAS

MetaPredictor

@ For the cheap-to-evaluate hardware objectives, such as latency, energy
consumption.

@ A parametric regression model (e.g. MLP) pp*(c,d") : A x H — R.

@ We use the same predictors as in [1] and optimize the MSE loss:

mgin Eqma @t — po(a, dj")?
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MODNAS

MetaPredictor

@ For the cheap-to-evaluate hardware objectives, such as latency, energy
consumption.

@ A parametric regression model (e.g. MLP) pp*(c,d") : A x H — R.

@ We use the same predictors as in [1] and optimize the MSE loss:

win By im0 = P§ (0 di))?
e Use L'(-,0) = py'(aa, d") as the objective function.

o During the search we freeze and do not update further the
MetaPredictor parameters 6.
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MODNAS

MetaHypernetwork

@ We use a hypernetwork
Hg(r,d;) that takes as

input a device embedding —
d¢ and a preference vector | o, r
r € RM to yield an .
architecture distribution &. 4 fen
- Just a forward pass to
generate an architecture. :
- Scalable across different o, r
hardware devices.
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MODNAS

Linear Scalarization

Using the preference vector r to create a linear scalarization of L; and the
MetaHypernetwork to model the architectural distribution across T devices, the
bi-level problem reduces to:

argminE, s [rTLf““d('w* (), ao)]
P

st. w*(ag) =argminE, s [rTL" " (w, as)],
w

where rTL; (-, ag) = Zn]\le rm L7 (, ag) is the scalarized loss for device ¢.

Thetrained MetaHPN approximates the Pareto front by generating architectures given:
1) preference vectors
RN N 2) device type
\

v, =

Latency Preference

Test Device: %7

Accuracy Preference

FPGA

Latency
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MODNAS

Linear Scalarization

Using the preference vector r to create a linear scalarization of L; and the
MetaHypernetwork to model the architectural distribution across 1" devices, the
bi-level problem reduces to:

argmin E,. s [rTLf"”d (w*(ae), ao)]
>

st. w*(as) =argminE, s [rTLI" " (w, as)],
w

where rTL; (-, ag) = 2%21 rm L7 (-, ag) is the scalarized loss for device ¢.

@ Conditioning the MetaHypernetwork on the hardware embeddings allows us
to generate architectures on new test devices without extra finetuning or
meta-learning steps.
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MODNAS

Linear Scalarization

We sample the preference vector r from a Dirichlet distribution with
concentration parameters 51,..., 0y = 1.

B =(0.999,0.999, 0.999) B = (5.000, 5.000, 5.000) B = (2.000, 5.000, 15.000) = (0.100, 0.100, 0.100)
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MODNAS

Optimizing the MetaHypernetwork with MGD

@ Multiple Gradient Descent (MGD) seeks to simultaneously optimize the
MetaHypernetwork parameters (shared across all devices) ® <— ® — £g3, where:

* T *
95 =D 117 9%
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MODNAS

Optimizing the MetaHypernetwork with MGD

@ Multiple Gradient Descent (MGD) seeks to simultaneously optimize the
MetaHypernetwork parameters (shared across all devices) ® <— ® — £g3, where:
o = Doy Vi o

@ What are the optimal ~;7?

min {HZ%%
t=1

Ylseees YT

Z% — 1,y >0, Vt}
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MODNAS

Optimizing the MetaHypernetwork with MGD

@ Multiple Gradient Descent (MGD) seeks to simultaneously optimize the
MetaHypernetwork parameters (shared across all devices) ® <— ® — £g3, where:

95 =201 7 b
@ What are the optimal ~;7?

T 2
min { ‘Z Vg
t=1 2

Y1y VT

T
Z’yt = 1,’}/t 2 O,Vt}
t=1

2 1.\T 2
—y*:max(min(w 1)70>

3
1 _ 2 T
ng’ gq’Hz ?:(9 6) 79 y=1
o -8l
e T >2: Figure 1: Visualisation of the min-norm point in the convex hull
of two points (min. .1 |76 + (1 — 7)8][3). As the geometry sug-
Frank-Wolfe solver [jaggi, 20131 gests, the solution is either an edge case or a perpendicular vector.
1]
&
2
Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization, Jaggi, ICML 2013 -EE—
Figure from: Multi-Task Learning as Multi-Objective Optimization. Sener and Koltun, NeurlPS 2018 SE
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MODNAS

All pieces together

features

[l

Device 1 | [T11
Device 2 : o
. I
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Device T [D:D:
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MODNAS

All pieces together

Supernet f(-;w,a) (0bj.1)

features
[l
Device 1 | [T11
Device 2 : o
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MODNAS

All pieces together

Supernet f(-;w,a) (0bj.1)

features
[l
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MODNAS

All pieces together

Supernet f(-;w,a) (0bj.1)

o= V¢(r]£‘.% +1 LY+t rML{V')

Liam :
< :
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Update @ . '
using MGD: 8o = E}/rgm
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Experimental results

Simultaneous Pareto Set Learning across 19 devices on NB201

@ Metric: Hypervolume (HV) indicator.

@ Baselines:

o Random baselines
e Evolutionary strategies
o Bayesian Optimization

@ Evaluation: Sample 24 preference
vectors and get the MAP
architecture from the
MetaHypernetwork output for

titan
=" 256 gold_6226

—%¥— MODNAS —#+— CMA-ES+LaMOO —»— MO-ASHA ~#— QqEHVI
each of them. s cunes e RS0 —m- NsGA
—4— RHPN —— LS —u— LS-BO —== Global opt.

UNI
FREIBURG

MODNAS February 24, 2025 12



Experimental results

MetaHypernetwork update schemes: robustness of MGD

@ Metric: Hypervolume (HV) indicator over time.

titan_rtx_256

@ Baselines:

Hypervolume

e Mean grad update
e Sequential grad updates
o Grad samples updates

@ Evaluation: Sample 24 preference 0ss -
il \f FEYA BN
vectors and get the MAP o PRI [T R
. o 0-85 i . ¥ LA
architecture from the fon| A EIIE R R
S iy i
MetaHypernetwork output for Ros 4 LA LT
ID7D+MéD VAT 4
each of them. oo ||z s
=
o 20 40 6 80 100
Search Epochs
1]
[
2
—_3_
zlﬂ
S
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Experimental results

Scalability to 3 objectives

@ Optimize for latency, energy usage and accuracy simultaneously across
devices.

Global opt.
RS

RHPN
MODNAS
LS-BO
MO-RE
MO-ASHA
NSGA-II
RS-BO
QqEHVI

FPGA

0.5

AB1oua efdy
+ 0 YV e 8 4« > X o

Hypervolume

0
0.0 010 015 020
0.05 -
0.00 error
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Experimental results

Pareto front profiling on Transformer Spaces

@ We run MODNAS on the Hardware-Aware Transformer (HAT) mang et a1.
20201 search space on the WMT'14 En-De machine translation task.

@ Search costs: 6 days on 8 NVidia RTX A6000

RaspberryPi-CPU Xeon-CPU

TitanXp-GPU
0.7 . 0.7 7 7

Hypervolume
°
>
Hypervolume
Hypervolume
°
S

o
@«
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Experimental results

Pareto front profiling on Transformer Spaces

@ We run MODNAS on the Hardware-Aware Transformer (HAT) mang et a1.
20201 search space on the WMT'14 En-De machine translation task.

@ Search costs: 6 days on 8 NVidia RTX A6000
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Experimental results

Efficient MOO on ImageNet-1k and OpenWebText starting from Pretrained
Supernetworks

@ We use the Once-for-All (OFA) rcai ¢ a1. 20201 pretrained supernet on
ImageNet and run MODNAS for 1 day on 8 GPUs.

@ We also use HW-GPT-Bench texttt[sukthanker et al. 2024] to run MODNAS on a
GPT-2 search space.

@ Higher HV compared to baselines
Al00

—*— RS

—=— MOREA
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—»— MOASHA
EHVI
MODNAS
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w
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Summary and future directions

@ MODNAS can profile the pareto front of various objective spaces.
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Summary and future directions

@ MODNAS can profile the pareto front of various objective spaces.

@ Via a hypernetwork and MGD, MODNAS can optimize
simultaneously across many devices (up to 19) and multiple objectives
(up to 3).
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Summary and future directions

@ MODNAS can profile the pareto front of various objective spaces.

@ Via a hypernetwork and MGD, MODNAS can optimize
simultaneously across many devices (up to 19) and multiple objectives
(up to 3).

@ We show improved hypervolume on test devices across various
spaces, tasks and datasets, without additional fine-tuning and with
less search costs.
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Summary and future directions

@ MODNAS can profile the pareto front of various objective spaces.

@ Via a hypernetwork and MGD, MODNAS can optimize
simultaneously across many devices (up to 19) and multiple objectives
(up to 3).

@ We show improved hypervolume on test devices across various
spaces, tasks and datasets, without additional fine-tuning and with
less search costs.

@ https://arxiv.org/pdf/2402.18213

In the future:

UNI
1

FREIBURG

MODNAS February 24, 2025 17


https://arxiv.org/pdf/2402.18213

Summary and future directions

@ MODNAS can profile the pareto front of various objective spaces.

@ Via a hypernetwork and MGD, MODNAS can optimize
simultaneously across many devices (up to 19) and multiple objectives
(up to 3).

@ We show improved hypervolume on test devices across various
spaces, tasks and datasets, without additional fine-tuning and with
less search costs.

@ https://arxiv.org/pdf/2402.18213

In the future:
o Extend MODNAS to work in the Few-shot NAS settings with
subspace partitions. 9
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Summary and future directions

@ MODNAS can profile the pareto front of various objective spaces.

@ Via a hypernetwork and MGD, MODNAS can optimize
simultaneously across many devices (up to 19) and multiple objectives
(up to 3).

@ We show improved hypervolume on test devices across various
spaces, tasks and datasets, without additional fine-tuning and with
less search costs.

@ https://arxiv.org/pdf/2402.18213

In the future:

o Extend MODNAS to work in the Few-shot NAS settings with
subspace partitions.

@ More control on the preference vector sampler during search. ~z&-
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Thank you for your attention.
Questions?

MODNAS
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